HFIR Fundamental Neutron Physics Beamline

Takeyasu Ito University of Tennessee

- The High Flux Isotope Reactor and the HFIR Upgrade
- The Fundamental Neutron Physics Beamline at HFIR
 - Neutron guide design
 - Expected performance
 - Preliminary shielding calculation
- Schedule + Action items

HFIR is the World's Highest Power Research Reactor

An upgrade that is in progress will provide a cold neutron source with a brightness equal to the ILL

Cold Neutron Guide Hall at HFIR

The New HFIR Guide Hall

HFIR Upgrade Project

- Upgrade is fully funded from BES
- Upgrade includes new experimental hall, cold source, neutron guides, utilities, and scattering instruments (2xSANS, 2x3Axis, & Reflectometer)
- Low power operation with cold source and guides anticipated in Dec, 2005
- Full power operation in April 2006

The HFIR Upgrade is One of Three National Priorities for Neutron Science identified by the White House Office of Science and Technology Policy

Implementation Priority 1:

The Department of Energy, the National Science Foundation, and other interested agencies, should immediately establish a framework for an interagency partnership to provide funding resources to develop and operate a robust suite of instruments, approximately 75% of full instrumentation, to address a broad spectrum of neutron scattering measurements at the SNS. To be timely, the framework for instrument development should be affected within the next six months.

Implementation Priority 2:

The IWG recommends that NIST and the Department of Commerce along with their partners, including the National Science Foundation, continue to fully support: 1) the source operations of the NCNR; 2) the improvements in source and instrument capability; and 3) the increased levels of support for both the NIST research program the general science community.

Implementation Priority 3:

The IWG recommends that the Department of Energy should fully support the cold source and instrument upgrade project at the HFIR and ensure that the instruments are operated to support a robust general user program.

Source "The Status and Needs of Major Neutron Scattering Facilities and Instruments," OSTP, 2002

Comparison of Neutron Facilities in the US

Facility	Status	Op days per year	Guide Area (cm²)	(Guide) ² m	Cold source Brightness at ~4Å (10 ¹⁰ n/cm²/s/sr/Å)	Relative Brightness *Area*Year	Relative Yearly Fluence
		-		Pulsed	Sources		
Lujan (FP12)	Ор	104 85%	90	9	2.5	1	I
SNS (FP13)	Prop	208	120	12	71	76	101
31100				Continuo	is Sources		
NIST (NG6)	Ор	266 100%	36 Note 4	1.4	150	61	10
HFIR (HB4)	Prop	261 93%	22 Note 5	4	450	110	<i>50</i> Note 5
PSI	Ор	245	120	9	60	75	75
ILL (PF1b)	Ор	200	120	4	450	460	205

Source: Tribble et. al., 2003

Comparison of Neutron Facilities in the US

Facility	Status	Op days per year	Guide Area (cm²)	Guide m	Cold source Brightness at ~4Å (10 ¹⁰ n/cm²/s/s/x/Å)	Relative Brightness *Area*Year	Relative Yearly Fluence
		Note 1		Note 2	7,00,000	Note 3	Note 3
				Pulsed S	Sources		
Lujan	Ор	104	90	9	2.5	1	1
(FP12)		85%					
SNS	Prop	208	120	12	71	76	101
(FP13)							
11900				Continuou	is Sources		
NIST	Ор	266	36	1.4	150	61	10
(NG6)		100%	Note 4				
HFIR	Prop	261	22	4	450	110	<i>5</i> % 25
(HB4)		93%	Note 5				Note 5
PSI	Op	245	120	9	60	Guide	e Losses

Guide Losses in ~35m of curved guides results in a reduction of ~x2.

Source: Tribble et. al., 2003

ILL

(PF1b)

450

Op

200

120

What is needed for npdgamma at HFIR?*

- ~10m of neutron guide
- Neutron guide shielding
- Experiment shielding
- Liquid H₂ authorization
- Shutter and miscellaneous components

*Over and above the HFIR upgrade project

HFIR neutron guide design consideration

Space between our beamline and the adjacent beamline

```
(Personnel access to the SANS neutron collimator controller + space for radiation shielding)

→Need an extra bend
```

 Matching between the HFIR guide and the npdg experiment

```
(Exit of CG4 guide: 15cmx1.9cm)

→ Vertically tapered ("parabolic") guide
```


HFIR guide proposed design

FL

Matching the HFIR Guide to npdy

Because the HB-4 guide is m=2, it is possible to vertically "focus" the neutrons with an m=3.5 tapered guide

Expected neutron spectrum

Expected neutron flux

Guide design	Upstream septa	Bender length (m)	Radius of Curvature (m)	Number of channels	Neutron density (10³ n/cm³)	Neutron fluence (10 ¹⁰ n/s)
Long bender	yes	10	120	4	14.7± 0.4	3.23± 0.03
Short bender	yes	2	36.80	10	12.4 ± 0.4	3.21 ± 0.03
Very short bender	yes	0.5	9.80	24	9.1 ± 0.3	2.40 ± 0.02
Long bender	no	10	120	4	8.1 ± 0.3	1.86 ± 0.02
Short bender	no	2	36.80	10	7.7 ± 0.3	1.90 ± 0.02
Very short bender	no	0.5	9.80	24	6.0 ± 0.3	1.43 ± 0.02

Gain in fluence (with respect to FP12) is approximately Gain in neutrons delivered per year is approximately

*x*10

*x*25

Footprint of $npd\gamma$ in HFIR guide hall

Radiation shielding issues

Radiation sources

- No fast neutrons or gammas (no direct line of sight to the moderator)
- Main source: 2.2 MeV γ's from neutron capture in the target
- Cold neutrons are easier to shield against

Requirement

- < 5 mrem/hr for non-restricted access</p>
- 5-100 mrem/hr for "radiation area"
 - Acceptable condition for infrequent access to the SANS apparatus

Simple model calculation

Shielding options

- 30 cm concrete
 - More work space on the "beam right" side
 - Probably a little more challenging to make it structurally sound AND removable
- 10 cm iron walls
 - Needs to surround the experiment symmetrically
 - Less work space on the "beam right" side
 - Also serves as magnetic shielding
 - High field magnets will be used at HFIR (14 T magnet 10m away)

Action items

- Finalize the beamline design and generate the equiment specification
- Perform more realistic shielding calculation (MCNP?)
- Magnetic field calculation with iron shielding
 - Field uniformity
 - Magnetic shielding factor
- Start process for hydrogen target approval

End of Presentation

